Referencing Exercise

Each of the following pages represents an item you might put into a reference list: books, journal articles, web page and map. (Note: there are many other types of resource you might reference, these are just common ones for example.)

Examine the details for each item and construct an APA 7th edition reference for each item. You should use Referencing@Portsmouth https://library.port.ac.uk/ref/page2.html to find templates and examples to follow.

Create a reference list of all the items in the correct order for a reference list – not the order found here.
Buildings and civil engineering works — Procedures for setting out, measurement and surveying — Vocabulary

National foreword

This British Standard is the UK implementation of ISO 7078:2020.

The UK participation in its preparation was entrusted to Technical Committee CE/101/-/2, Basic Data - Terminology.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 539 04051 7

ICS 01.040.01; 91.200

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2020.

Amendments/corrigenda issued since publication

Date Text affected
Construct-it: A board game to enhance built environment students’ understanding of the property life cycle

S. Hayhow and E.A. Parn
Birmingham City University, UK

D.J. Edwards
Birmingham City University, UK; University of Johannesburg, South Africa

M. Reza Hosseini
Deakin University, Australia

C. Aigbavboa
University of Johannesburg, South Africa

Abstract
This article investigates the development of a board game entitled ‘Construct-it’ as an innovative pedagogical approach (as proof of concept) to augmenting the applied knowledge and understanding of built environment students studying property life cycle analysis. A largely qualitative and inductive methodological approach is conducted to identify and investigate the various pertinent theoretical frameworks that could be adopted; conduct a critical synthesis of extant literature; and develop Construct-it, a game intuitively grounded in practice-based knowledge. The study reveals that games provide a fun, engaging and challenging means of educating students at higher education institutions. It also notes a significant dearth of literature in terms of applying games to students enrolled on built environment programmes. Construct-it can enhance the student’s learning experience and knowledge of pertinent industry practice and standards and can complement traditional classroom teaching approaches. The study concludes with directions for the future work required to enhance the development of the novel pedagogical proof of concept presented. Such work will require robust testing and validation of the game to measure its impact on the student learning experience.

Keywords
Built environment students, Construct-it, educational games, innovative pedagogical approach

Play and games are considered to be fundamental aspects of human endeavor that are embedded in our society and culture (Roberts et al., 1959). They allow for suspension of reality and freedom from ordinary life (Callois, 1961; Huizinga, 1955). Due to their compelling nature, games have also been applied and utilized in various arenas of education as an innovative pedagogical approach to enhancing the knowledge and performance of students (Braghieri et al., 2016). Games can be used to engender the creation of new learning environments by integrating thinking, social ‘collaborative’ interaction and technology (Kafai et al., 1998). This application of gameplay has been capitalized on by several educational sectors, including health studies, to train students in, for example, the better diagnosis of patients (Gibson and Douglas, 2013).

Corresponding author:
D.J. Edwards, Faculty of Environment, Technology and Engineering, Birmingham School of the Built Environment, Birmingham City University, City Centre Campus, Millennium Point, Birmingham B4 7XG, UK.
Email: david.edwards@bcu.ac.uk
Structural determinants of graduate employability: impact of university and industry collaborations

John Aliu and Clinton Ohis Aigbavboa
Cidb Centre of Excellence, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa

Abstract
Purpose – The purpose of this paper is to examine the impacts of university and construction industry collaborations (UIC) activities in developing the employability of built environment graduates.

Design/methodology/approach – This study adopted a quantitative approach wherein data was obtained from professionals across academia, construction industry and government establishment within the South African built environment. A total of 204 questionnaires were administered to these professionals to provide information regarding the subject matter under question. Structural equation modeling (SEM) was adopted to examine possible relationships among identified factors that were obtained from a review of extant literature. SEM was performed using analysis of moment structures (AMOS Graphics, version 26) in testing the model and a best-fit was achieved after various model selections and validation tests were conducted.

Findings – The final model revealed that graduate employability can be improved through UIC as effective university-industry linkages provide students with mentoring opportunities and exposure to relevant training which improves their job market prospects and ultimately increases their professional relevance in the long run.

Practical implications – To continuously enhance the employability of students before graduation, universities are required to foster collaborations with the industry as such linkages are critical to the development of the future custodians of the construction industry.

Originality/value – There have been several generalized statements as to which of the UIC activities contribute to graduate employability. Therefore, through the use of SEM using AMOS, it was possible to state precisely the UIC constructs that are statistically significant and contribute to graduate employability.

Keywords Active learning, Graduate employability, Pedagogy, Structural equation modeling, University industry collaboration

Paper type Research paper

1. Introduction
Higher education institutions (HEIs) across the globe have continuously been viewed as training centers that can develop human capital, which eventually contributes to a nation’s innovation and development (Hansen and Lehmann, 2006; Feng et al., 2010). Their roles in ion have earmarked them as key drivers of innovation and key agents of According to Sseborwufu et al. (2012) and Garcia et al. (2019), higher wide students with the requisite understanding of construction and its through their undergraduate programs. However, the traditional achs are simply not enough as universities seek to accomplish their
Civil Engineering & Construction Materials
Covers structural engineering, code compliance, earth moving, green building, road construction and building with materials such as concrete, wood and steel. Of use to civil engineers designing structures and developing infrastructure projects including bridges, dams, pipelines, and roadways.

ACI 318 – Strength Design for Rectangular Columns Subjected to Axial Load and Bending about One Axis
Calculation of the ultimate strength design for a rectangular beam subject to axial and bending loads according to ACI 318.

ACI 318, Material Parameters Calculation
Calculation of design parameters for concrete material and steel reinforcing bars.

ACI 318, Reinforcing Bar Data
Calculation of reinforcing bar data according to ACI 318.

ACI 318, Reinforcing Bar Development and Splice Lengths
ACI 318 assumes that reinforcing bar development is the greater of the lengths calculated using this equation for tensile stress.

ACI 318, Serviceability Design Crack Analysis and Check for Rectangular Beams
ACI 318 provides a maximum spacing of reinforcing bars to prevent surface cracks, which is assumed as the lower value given by the formulas shown below.

ACI 318, Serviceability Design Deflection Limits and Check for Rectangular Beams
Calculation of the design deflection limits as provided by ACI 318 assuming the parameter reported below for the calculation of the design deflection.